If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2q^2-31q+15=0
a = 2; b = -31; c = +15;
Δ = b2-4ac
Δ = -312-4·2·15
Δ = 841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{841}=29$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-31)-29}{2*2}=\frac{2}{4} =1/2 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-31)+29}{2*2}=\frac{60}{4} =15 $
| 5X-2x-27=15 | | 8n-(6+5)=1 | | 6x+19+x=280 | | (x+50)+(4x+20)+(2x+80)=360 | | t+24/5=10 | | 3x5^x-6=12 | | 8n-(6n+5=1 | | 2X9,-4=5x-28 | | 2x+x³=30 | | 5/2c=8/13 | | 6.2+7d/2.5=14.88 | | 4n^2-45n+11=0 | | 90=(6x+4)10x | | 2y+21/5=9 | | 19=2t+5 | | -6/7=(-1/2v)-4/3 | | 2y+2/5=9 | | z2-3z-70=0 | | 3(2x-)=3x+4x | | An=7n-16 | | 12225=7500+225n | | 03b=0.9 | | 39u^2-10u-1=0 | | r/4+16=r/2+10 | | x+96+10=104 | | (-0.4v)-1.4=(-5/3) | | 5070=90c+2100 | | x=6x^2+2x+1 | | 24=p/6 | | 8.9x-12.2=23.4 | | 14040-50(18.5)=a | | 12c-18=2c+2 |